Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Horiz ; 8(9): 1262-1272, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37404207

RESUMO

Solution-based synthesis of mixed ionic and electronic conductors (MIECs) has enabled the development of novel inorganic materials with implications for a wide range of energy storage applications. However, many technologically relevant MIECs contain toxic elements (Pb) or are prepared by using traditional high-temperature solid-state synthesis. Here, we provide a simple, low-temperature and size-tunable (50-90 nm) colloidal hot injection approach for the synthesis of NaSbS2 based MIECs using widely available and non-toxic precursors. Key synthetic parameters (cationic precursor, reaction temperature, and ligand) are examined to regulate the shape and size of the NaSbS2 nanocrystals (NCs). FTIR studies revealed that ligands with carboxylate functionality are coordinated to the surface of the synthesized NaSbS2 NCs. The synthesized NaSbS2 nanocrystals have electronic and ionic conductivities of 3.31 × 10-10 (e-) and 1.9 × 10-5 (Na+) S cm-1 respectively, which are competitive with the ionic and electrical conductivities of perovskite materials generated by solid-state reactions. This research gives a mechanistic understanding and post-synthetic evaluation of parameters influencing the formation of sodium antimony chalcogenides materials.

2.
Chem Mater ; 34(23): 10528-10537, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36530939

RESUMO

The solution-based colloidal synthesis of multinary semiconductor compositions has allowed the design of new inorganic materials impacting a large variety of applications. Yet there are certain compositions that have remained elusive-particularly quaternary structures of transition metal-based (e.g., Co, Zn, Ni, Fe, Mn, and Cr) copper antimony chalcogenides. These are widely sought for tuning the electrical and thermal conductivity as a function of the size, composition, and crystal phase. In this work, a facile hot injection approach for the synthesis of three different tetrahedrite-substituted nanocrystals (NCs) (Cu10Zn2Sb4S13, Cu10Co2Sb4S13, and Cu10Ni1.5Sb4S13) and their growth mechanisms are investigated. We reveal that the interplay between the Zn, Ni, and Co precursors on the basis of thiophilicity is key to obtaining pure phase NCs with controlled size and shape. While all of the synthesized crystal phases display outstanding low thermal conductivity, the Cu10.5Sb4Ni1.5S13 system shows the most enhanced electrical conductivity compared to Cu10Zn2Sb4S13 and Cu10Co2Sb4S13. This study highlights an effective synthesis strategy for the growth of complex quaternary nanocrystals and their high potential for application in thermoelectrics.

3.
ACS Nano ; 16(6): 8917-8927, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35593407

RESUMO

Direct colloidal synthesis of multinary metal chalcogenide nanocrystals typically develops dynamically from the binary metal chalcogenide nanocrystals with the subsequent incorporation of additional metal cations from solution during the growth process. Metal seeding of binary and multinary chalcogenides is also established, although the seed is solely a catalyst for nanocrystal nucleation and the metal from the seed has never been exploited as active alloying nuclei. Here we form colloidal Cu-Bi-Zn-S nanorods (NRs) from Bi-seeded Cu2-xS heterostructures. The evolution of these homogeneously alloyed NRs is driven by the dissolution of the Bi-rich seed and recrystallization of the Cu-rich stem into a transitional segment, followed by the incorporation of Zn2+ to form the quaternary Cu-Bi-Zn-S composition. The present study also reveals that the variation of Zn concentration in the NRs modulates the aspect ratio and affects the nature of the majority charge carriers. The NRs exhibit promising thermoelectric properties with very low thermal conductivity values of 0.45 and 0.65 W/mK at 775 and 605 K, respectively, for Zn-poor and Zn-rich NRs. This study highlights the potential of metal seed alloying as a direct growth route to achieving homogeneously alloyed NRs compositions that are not possible by conventional direct methods or by postsynthetic transformations.

4.
Adv Mater ; 33(52): e2105917, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34613631

RESUMO

Silicon nanowires (Si NWs) are a promising anode material for lithium-ion batteries (LIBs) due to their high specific capacity. Achieving adequate mass loadings for binder-free Si NWs is restricted by low surface area, mechanically unstable and poorly conductive current collectors (CCs), as well as complicated/expensive fabrication routes. Herein, a tunable mass loading and dense Si NW growth on a conductive, flexible, fire-resistant, and mechanically robust interwoven stainless-steel fiber cloth (SSFC) using a simple glassware setup is reported. The SSFC CC facilitates dense growth of Si NWs where its open structure allows a buffer space for expansion/contraction during Li-cycling. The Si NWs@SSFC anode displays a stable performance for 500 cycles with an average Coulombic efficiency of >99.5%. Galvanostatic cycling of the Si NWs@SSFC anode with a mass loading of 1.32 mg cm-2 achieves a stable areal capacity of ≈2 mAh cm-2 at 0.2 C after 200 cycles. Si NWs@SSFC anodes with different mass loadings are characterized before and after cycling by scanning and transmission electron microscopy to examine the effects of Li-cycling on the morphology. Notably, this approach allows the large-scale fabrication of robust and flexible binder-free Si NWs@SSFC architectures, making it viable for practical applications in high energy density LIBs.

5.
Small ; 17(10): e2005443, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33475259

RESUMO

A scalable and cost-effective process is used to electroplate metallic Zn seeds on stainless steel substrates. Si and Ge nanowires (NWs) are subsequently grown by placing the electroplated substrates in the solution phase of a refluxing organic solvent at temperatures >430 °C and injecting the respective liquid precursors. The native oxide layer formed on reactive metals such as Zn can obstruct NW growth and is removed in situ by injecting the reducing agent LiBH4 . The findings show that the use of Zn as a catalyst produces defect-rich Si NWs that can be extended to the synthesis of Si-Ge axial heterostructure NWs with an atomically abrupt Si-Ge interface. As an anode material, the as grown Zn seeded Si NWs yield an initial discharge capacity of 1772 mAh g-1 and a high capacity retention of 85% after 100 cycles with the active participation of both Si and Zn during cycling. Notably, the Zn seeds actively participate in the Li-cycling activities by incorporating into the Si NWs body via a Li-assisted welding process, resulting in restructuring the NWs into a highly porous network structure that maintains a stable cycling performance.

6.
iScience ; 23(12): 101793, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33294800

RESUMO

Efficient electrocatalyst toward hydrogen evolution/oxidation reactions (HER/HOR) and oxygen reduction reaction (ORR) is desirable for water splitting, fuel cells, etc. Herein, we report an advanced platinum phosphide (PtP2) material with only 3.5 wt % Pt loading embedded in phosphorus and nitrogen dual-doped carbon (PNC) layer (PtP2@PNC). The obtained catalyst exhibits robust HER, HOR, and ORR performance. For the HER, a much low overpotential of 8 mV is required to achieve the current density of 10 mA cm-2 compared with Pt/C (22 mV). For the HOR, its mass activity (MA) at an overpotential of 40 mV is 2.3-fold over that of the Pt/C catalyst. Interestingly, PtP2@PNC also shows exceptional ORR MA which is 2.6 times higher than that of Pt/C and has robust stability in alkaline solutions. Undoubtedly, this work reveals that PtP2@PNC can be employed as nanocatalysts with an impressive catalytic activity and stability for broad applications in electrocatalysis.

7.
Nanomicro Lett ; 12(1): 21, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34138058

RESUMO

Hydrogen, a renewable and outstanding energy carrier with zero carbon dioxide emission, is regarded as the best alternative to fossil fuels. The most preferred route to large-scale production of hydrogen is by water electrolysis from the intermittent sources (e.g., wind, solar, hydro, and tidal energy). However, the efficiency of water electrolysis is very much dependent on the activity of electrocatalysts. Thus, designing high-effective, stable, and cheap materials for hydrogen evolution reaction (HER) could have a substantial impact on renewable energy technologies. Recently, single-atom catalysts (SACs) have emerged as a new frontier in catalysis science, because SACs have maximum atom-utilization efficiency and excellent catalytic reaction activity. Various synthesis methods and analytical techniques have been adopted to prepare and characterize these SACs. In this review, we discuss recent progress on SACs synthesis, characterization methods, and their catalytic applications. Particularly, we highlight their unique electrochemical characteristics toward HER. Finally, the current key challenges in SACs for HER are pointed out and some potential directions are proposed as well.

8.
Angew Chem Int Ed Engl ; 58(12): 3859-3864, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30637898

RESUMO

Theoretical calculations reveal that intrinsic pentagons in the basal plane can contribute to the local electronic redistribution and the contraction of band gap, making the carbon matrix possess superior binding affinity and electrochemical reactivity. To experimentally verify this, a pentagon-defect-rich carbon nanomaterial was constructed by means of in situ etching of fullerene molecules (C60 ). The electrochemical tests show that, relative to hexagons, such a carbon-based material with abundant intrinsic pentagon defects makes much greater contribution to the electrocatalytic oxygen reduction activity and electric double layer capacitance. It shows a four-electron-reaction mechanism similar to commercial Pt/C and other transition-metal-based catalysts, and a higher specific capacitance than many reported metal-free carbon materials. These results show the influence of intrinsic pentagon defects for developing carbon-based nanomaterials toward energy conversion and storage devices.

9.
Nanoscale ; 10(26): 12407-12412, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29926048

RESUMO

Highly active and stable Pt-free electrocatalysts for hydrogen production via water splitting are of great demand for future energy systems. Herein, we report a novel hydrogen evolution reaction (HER) catalyst consisting of rhodium phosphide (Rh2P) nanoparticles as the core and N-doped carbon (NC) as the shell (Rh2P@NC). In a wide pH range, our catalyst not only possesses a small overpotential at 10 mA cm-2 (∼9 mV in 0.5 M H2SO4, ∼46 mV in 1.0 M PBS and ∼10 mV in 1.0 M KOH), but also demonstrates high stability. Importantly, all these performances are far superior to commercial Pt/C catalysts for HER. To the best of our knowledge, this is the highest HER performance reported so far in acidic and basic media. Density functional theory (DFT) calculations reveal that the introduction of phosphorus can significantly lower the proton adsorption energy of Rh/NC, thereby benefiting surface hydrogen generation. Moreover, this synthetic strategy for Rh2P@NC is also applied to other transition metal phosphides (TMPs)/nitrogen-doped carbon heterostructures (such as Ru2P@NC, Fe2P@NC, WP@NC etc.) with advanced performance toward HER and beyond.

10.
Small ; 14(20): e1800381, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29665246

RESUMO

Tuning the electron structure is of vital importance for designing high active electrode materials. Here, for boosting the capacitive performance of tungsten oxide, an atomic scale engineering approach to optimize the electronic structure of tungsten oxide by Ni doping is reported. Density functional theory calculations disclose that through Ni doping, the density of state at Fermi level for tungsten oxide can be enhanced, thus promoting its electron transfer. When used as electrode of supercapacitors, the obtained Ni-doped tungsten oxide with 4.21 at% Ni exhibits an ultrahigh mass-specific capacitance of 557 F g-1 at the current density of 1 A g-1 and preferable durability in a long-term cycle test. To the best of knowledge, this is the highest supercapacitor performance reported so far in tungsten oxide and its composites. The present strategy demonstrates the validity of the electronic structure control in tungsten oxide via introducing Ni atoms for pseudocapacitors, which can be extended to other related fields as well.

11.
ChemSusChem ; 11(8): 1328-1333, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29377610

RESUMO

Currently, a multicomponent platinum-based alloy has been applied as a promising electrocatalyst to improve catalysis and lower the usage of the noble metal platinum. Herein, a tellurium nanowire (NW)-derived ternary TePtFe nanotube (NT) electrocatalyst has been prepared by the Kirkendall effect. The TePtFe NT formed consists of small single-crystal nanoparticles and voids with an open-end and hollow structure. The TePtFe NT electrocatalyst presents an impressive catalytic activity and stability for both the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). Its ORR specific activity and mass activity are 8.5 and 2.4 times, respectively, improved relative to those of commercial platinum catalysts. It is also impressive that, for the HER, a very low overpotential of 28.1 mV at 10 mA cm-2 can be achieved; this is lower than that of platinum (51.8 mV) catalysts in 0.1 m HClO4 , and the activity is improved, even after 5000 cycles. This work reveals that TePtFe NTs can be employed as nanocatalysts with an impressive catalytic activity and stability for application in fuel cells and hydrogen production.

12.
ACS Nano ; 12(2): 1894-1901, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29361224

RESUMO

Structural and compositional engineering of atomic-scaled metal-N-C catalysts is important yet challenging in boosting their performance for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Here, boron (B)-doped Co-N-C active sites confined in hierarchical porous carbon sheets (denoted as Co-N,B-CSs) were obtained by a soft template self-assembly pyrolysis method. Significantly, the introduced B element gives an electron-deficient site that can activate the electron transfer around the Co-N-C sites, strengthen the interaction with oxygenated species, and thus accelerate reaction kinetics in the 4e- processed ORR and OER. As a result, the catalyst showed Pt-like ORR performance with a half-wave potential (E1/2) of 0.83 V versus (vs) RHE, a limiting current density of about 5.66 mA cm-2, and higher durability (almost no decay after 5000 cycles) than Pt/C catalysts. Moreover, a rechargeable Zn-air battery device comprising this Co-N,B-CSs catalyst shows superior performance with an open-circuit potential of ∼1.4 V, a peak power density of ∼100.4 mW cm-2, as well as excellent durability (128 cycles for 14 h of operation). DFT calculations further demonstrated that the coupling of Co-Nx active sites with B atoms prefers to adsorb an O2 molecule in side-on mode and accelerates ORR kinetics.

13.
Nanoscale ; 10(6): 2902-2907, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29368770

RESUMO

Transition metal phosphides (TMPs) are considered to be superb catalysts for water splitting. In this work, we introduce an efficient strategy to fabricate dicobalt phosphide (Co2P) quantum dots embedded in N, P dual-doped carbon (Co2P@NPC) on carbon cloth (Co2P@NPC/CC) by in situ carbonization of cobalt ion induced phytic acid (PA) and polyaniline (PANI) macromolecule precursors. As a highly efficient self-supported electrode, it has a low onset overpotential (74 mV at 1 mA cm-2) approaching that of the commercial Pt/C catalyst for the hydrogen evolution reaction (HER) in acidic media. Meanwhile, it also shows very low overpotentials of only 116 and 129 mV at 10 mA cm-2 with robust stability in acidic and alkaline media, respectively.

14.
Inorg Chem ; 56(22): 13651-13654, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29112422

RESUMO

Interface engineering has been demonstrated to be effective in promoting hydrogen evolution reaction (HER) in an alkaline solution. Herein, we report that the HER activity of a NiS2 nanoarray on a titanium mesh (NiS2/TM) in alkaline media is greatly boosted by the electrodeposition of Ni(OH)2 onto NiS2 [Ni(OH)2-NiS2/TM]. Ni(OH)2-NiS2/TM only needs an overpotential of 90 mV to deliver 10 mA cm-2 in 1.0 M KOH. Density functional theory calculations confirm that Ni(OH)2-NiS2 has a lower water dissociation free energy and a more optimal hydrogen adsorption free energy than NiS2.

15.
Angew Chem Int Ed Engl ; 56(38): 11559-11564, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28696513

RESUMO

Highly active, stable, and cheap Pt-free catalysts for the hydrogen evolution reaction (HER) are under increasing demand for future energy conversion systems. However, developing HER electrocatalysts with Pt-like activity that can function at all pH values still remains as a great challenge. Herein, based on our theoretical predictions, we design and synthesize a novel N,P dual-doped carbon-encapsulated ruthenium diphosphide (RuP2 @NPC) nanoparticle electrocatalyst for HER. Electrochemical tests reveal that, compared with the Pt/C catalyst, RuP2 @NPC not only has Pt-like HER activity with small overpotentials at 10 mA cm-2 (38 mV in 0.5 m H2 SO4 , 57 mV in 1.0 m PBS and 52 mV in 1.0 m KOH), but demonstrates superior stability at all pH values, as well as 100 % Faradaic yields. Therefore, this work adds to the growing family of transition-metal phosphides/heteroatom-doped carbon heterostructures with advanced performance in HER.

16.
ACS Appl Mater Interfaces ; 9(31): 26001-26007, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28714664

RESUMO

Exploring efficient and earth-abundant electrocatalysts for water splitting is crucial for various renewable energy technologies. In this work, iron (Fe)-doped nickel phosphide (Ni2P) nanosheet arrays supported on nickel foam (Ni1.85Fe0.15P NSAs/NF) are fabricated through a facile hydrothermal method, followed by phosphorization. The electrochemical analysis demonstrates that the Ni1.85Fe0.15P NSAs/NF electrode possesses high electrocatalytic activity for water splitting. In 1.0 M KOH, the Ni1.85Fe0.15P NSAs/NF electrode only needs overpotentials of 106 mV at 10 mA cm-2 and 270 mV at 20 mA cm-2 to drive the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Furthermore, the assembled two-electrode (Ni1.85Fe0.15P NSAs/NF∥Ni1.85Fe0.15P NSAs/NF) alkaline water electrolyzer can produce a current density of 10 mA cm-2 at 1.61 V. Remarkably, it can maintain stable electrolysis over 20 h. Thus, this work undoubtedly offers a promising electrocatalyst for water splitting.

17.
ACS Appl Mater Interfaces ; 9(19): 16187-16193, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28452469

RESUMO

Transition metal phosphides (TMPs) have been identified as promising nonprecious metal electrocatalyst for hydrogen evolution reaction (HER) and other energy conversion reactions. Herein, we reported a general strategy for synthesis of a series of TMPs (Fe2P, FeP, Co2P, CoP, Ni2P, and Ni12P5) nanoparticles (NPs) with different metal phases embedded in a N-doped carbon (NC) matrix using metal salt, ammonium dihydrogen phosphate, and melamine as precursor with varying molar ratios and thermolysis temperatures. The resultant TMPs can serve as highly active and durable bifunctional electrocatalyst toward HER and oxygen evolution reaction (OER). In particular, the Ni2P@NC phase only requires an overpotential of ∼138 mV to derive HER in 0.5 M H2SO4, and ∼320 mV for OER in 1.0 M KOH at the current density of 10 mA cm-2. Because of the encapsulation of NC that can effectively prevent corrosion of embedded TMP NPs, Ni2P@NC exhibits almost unfading catalytic performance even after 10 h under both acidic and alkaline solutions. This synthesis strategy provides a new avenue to exploring TMPs as highly active and stable electrocatalyst for the HER, OER, and other electrochemical applications.

18.
Nanoscale ; 9(10): 3555-3560, 2017 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-28244521

RESUMO

Applications of highly-efficient and durable non-precious metal electrocatalysts for hydrogen evolution reaction (HER) have great potential to relieve the energy crisis. Here, we demonstrate a green method for fabrication of a number of transition metal phosphides (TMPs) by pyrolyzing melamine and self-assembled phytic acid (PA) cross-linked metal complexes. The obtained materials consisting of TMP nanoparticles (NPs) are encapsulated in N,P-codoped carbon (NPC). Among TMPs, the resultant FeP NPs encapsulated in the NPC matrix (FeP NPs@NPC) show the highest HER activity at all pH values. At a current density of 10 mA cm-2, FeP NPs@NPC displays overpotentials of 130, 386 and 214 mV in 0.5 M H2SO4, 1.0 M phosphate buffer solution (PBS) and 1.0 M KOH, respectively. Additionally, the encapsulation by NPC effectively prevents FeP NPs from corrosion, exhibiting almost unfading catalytic activity after 10 h testing in acidic, neutral and basic electrolytes. More importantly, other TMPs wrapped in NPC (CoP NPs@NPC and Ni2P NPs@NPC) can be easily obtained by this method, which also exhibit relatively high activity toward HER. Therefore, this generic synthesis strategy opens a door for unprecedented design and fabrication of novel low-cost TMP based electrocatalysts for HER and other electrochemical applications.

19.
ACS Appl Mater Interfaces ; 9(4): 3702-3712, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28027443

RESUMO

In this work, we propose a one-step process to realize the in situ evolution of molybdenum carbide (Mo2C) nanoflakes into ordered mesoporous carbon with few-layered graphene walls (OMG) by chloridization and self-organization, and simultaneously the Cl-doping of OMG (OMG-Cl) by modulating chloridization and annealing processes is fulfilled. Benefiting from the improvement of electroconductivity induced by Cl-doping, together with large specific surface area (1882 cm2 g-1) and homogeneous pore structures, as anode of lithium ion batteries, OMG-Cl shows remarkable charge capacity of 1305 mA h g-1 at current rate of 50 mA g-1 and fast charge-discharge rate within dozens of seconds (a charge time of 46 s), as well as retains a charge capacity of 733 mA h g-1 at a current rate of 0.5 mA g-1 after 100 cycles. Furthermore, as a promising electrode material for supercapacitors, OMG-Cl holds the specific capacitances of 250 F g-1 in 1 M H2SO4 solution and 220 F g-1 at a current density of 0.5 A g-1 in 6 M KOH solution, which are ∼40% and 20% higher than those of undoped OMG electrode, respectively. The high capacitive performance of OMG-Cl material can be due to the additional fast Faradaic reactions induced from Cl-doping species.

20.
ACS Appl Mater Interfaces ; 8(43): 29408-29418, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27740758

RESUMO

3D graphene-based materials offer immense potentials to overcome the challenges related to the functionality, performance, cost, and stability of fuel cell electrocatalysts. Herein, a nitrogen (N) and sulfur (S) dual-doped 3D porous graphene catalyst is synthesized via a single-row pyrolysis using biomass as solitary source for both N and S, and structure directing agent. The thermochemical reaction of biomass functional groups with graphene oxide facilitates in situ generation of reactive N and S species, stimulating the graphene layers to reorganize into a trimodal 3D porous assembly. The resultant catalyst exhibits high ORR and OER performance superior to similar materials obtained through toxic chemicals and multistep routes. Its stability and tolerance to CO and methanol oxidation molecules are far superior to commercial Pt/C. The dynamics governing the structural transformation and the enhanced catalytic activity in both alkaline and acidic media are discussed. This work offers a unique approach for rapid synthesis of a dual-heteroatom doped 3D porous-graphene-architecture for wider applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...